If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-31y-40=0
a = 2; b = -31; c = -40;
Δ = b2-4ac
Δ = -312-4·2·(-40)
Δ = 1281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-\sqrt{1281}}{2*2}=\frac{31-\sqrt{1281}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+\sqrt{1281}}{2*2}=\frac{31+\sqrt{1281}}{4} $
| 2r–13=41 | | 2x-4(x-3)=-2+5x-21 | | 12x+7=3x+8 | | 72=17z | | 5-15(3w-2)=2w+(-15w+30) | | 72z=17z | | 2(x=3)=x-4 | | a+9=-13 | | 4x^2+45x-90=0 | | x/3-11=3 | | 10y+15(3-2y)=-25-(-10y+5) | | -6-8(-9m-7)=2(m-10) | | 140.27+0.64m=130 | | 3+(-9x+15)=24-(-12x+6) | | -10(9+12a)=12(-3-10a) | | 3(x+4)-7=4x+5-x -4 | | -3x=-51/3 | | 7y-6=31 | | 3/5x+14=4/5x+4 | | 56=6m | | 4=6x3^x | | 4/9x-5/3=1/9 | | 7=-25+3(b+5) | | 3-+4p=-31 | | 8-6(2x+7)=-82 | | 8(4m+4=) | | 56-4x=8 | | 3x2+3x-1=0 | | 13x-11=4x+38 | | 3z/10+5=9 | | 13x-11=4x=38 | | X=-18+(y+10) |